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The forces and torques governing the planar zigzag motion of thick, slightly buoyant
disks rising freely in a liquid at rest are determined by applying the generalized
Kirchhoff equations to experimental measurements of the body motion performed
for a single body-to-fluid density ratio ρs/ρf ≈ 1. The evolution of the amplitude
and phase of the various contributions is discussed as a function of the two control
parameters, i.e. the body aspect ratio (the diameter-to-thickness ratio χ = d/h ranges
from 2 to 10) and the Reynolds number (100 < Re < 330), Re being based on
the rise velocity and diameter of the body. The body oscillatory behaviour is found
to be governed by the force balance along the transverse direction and the torque
balance. In the transverse direction, the wake-induced force is mainly balanced by
two forces that depend on the body inclination, i.e. the inertia force generated by
the body rotation and the transverse component of the buoyancy force. The torque
balance is dominated by the wake-induced torque and the restoring added-mass
torque generated by the transverse velocity component. The results show a major
influence of the aspect ratio on the relative magnitude and phase of the various
contributions to the hydrodynamic loads. The vortical transverse force scales as
fo = (ρf − ρs)ghπd2 whereas the vortical torque involves two contributions, one
scaling as fod and the other as f1d with f1 = χfo. Using this normalization, the
amplitudes and phases of the vortical loads are made independent of the aspect
ratio, the amplitudes evolving as (Re/Rec1 − 1)1/2, where Rec1 is the threshold of the
first instability of the wake behind the corresponding body held fixed in a uniform
stream.

1. Introduction
Determining the forces and torques at the origin of any motion is a long-

standing raison d’être of mechanics. While a large number of results is available
for hydrodynamic forces acting on fixed bodies or on bodies with a prescribed
rectilinear motion, much less is known for loads experienced by freely moving
bodies driven by an external force, such as gravity. The central difficulty is tied
to the intrinsic coupling between the fluid and body motions, the relative body
displacement inducing a disturbance in the fluid which in turn imposes loads that
govern the body motion. Also, the governing equations and the interpretation of the
hydrodynamic couplings between the various degrees of freedom become significantly
more complex as soon as the body exhibits some geometrical anisotropy and starts
rotating. From an experimental viewpoint, accurately following the body motion is
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a non-trivial task, even with modern means, and describing the body kinematics is
a crucial part of the investigation. Despite these various difficulties, predicting the
hydrodynamic loads on such freely moving bodies as a function of the body geometry
and the characteristic parameters of the fluid/body system is of primary importance
in many applications ranging from aerodynamics (Lugt 1983) to biomechanics (Wang
2005) and dispersed two-phase flows (Magnaudet & Eames 2000), to mention just
a few. This is why this topic has become an active field of research in recent
years.

The general motion of a rigid body in an inviscid fluid at rest at infinity is governed
by the Kirchhoff equations (Lamb 1932). Generic theoretical and computational
investigations have considered the possible rational generalization of these equations
to finite-Reynolds-number flows. These studies converged to the key result that the so-
called added-mass effects due to the instantaneous displacement of the fluid induced
by any relative acceleration of the body are unaffected by viscous effects and can be
isolated from the wake-induced effects resulting from vorticity generation at the body
surface (see Howe 1995; Magnaudet & Eames 2000; Mougin & Magnaudet 2002a
and references therein). Using this result, Mougin & Magnaudet (2002b) solved
numerically the coupled fluid/body problem for a freely rising spheroidal bubble
with a prescribed shape, determining the fluid motion through the solution of the
full Navier–Stokes equations and the body motion through that of the generalized
Kirchhoff equations. They subsequently processed their numerical data to determine
the wake-induced forces and torques acting on the bubble when it moves along a
planar zigzag followed by a circular helical path (Mougin & Magnaudet 2006) and
showed how the time evolution of these vortical loads is connected to that of the
wake structure.

In experiments, the vortical wake-induced loads acting on the body cannot be
directly determined. However, the body motion can be accurately measured by
means of imaging techniques. Provided the body- and added-inertia tensors are
known, the projections of the buoyancy and inertia loads onto axes rotating with
the body can thus be determined using the body kinematics. Then, the vortical loads
are straightforwardly obtained through the balances provided by the generalized
Kirchhoff equations. Andersen, Pesavento & Wang (2005) took advantage of this to
determine the loads acting on a two-dimensional freely falling plate in four particular
cases of fluttering, tumbling and irregular paths. Shew, Poncet & Pinton (2006) used
the same procedure to evaluate the vortical force and torque acting on spheroidal
bubbles along their zigzag/helical path.

Following the same methodological line, our purpose in the present work is to
determine how the various loads acting on an axisymmetric body (which may be
considered either as a ‘thin cylinder’ or a ‘thick disk’) evolve when one of the
control parameters, namely the body aspect ratio, is varied continuously over a
wide range within which the body mainly follows a quasi-planar zigzag motion.
Hence, in contrast to the recent investigations mentioned above in which several
widely separated sets of parameters were selected to shed light on various path
transitions, we focus instead on a single type of path but try to understand
how the various loads (and hence the wake-induced effects) scale with the
aspect ratio and, to some extent, with the Reynolds number. Our goal is to
provide a detailed set of information which, combined with those offered in the
available studies reviewed above, including those devoted to spheroidal bubbles,
can guide the development of rational and general models for the wake-induced
loads.
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Figure 1. Sketch of the rotating axes (x,y,z) and definition of the components of the velocity
U and rotation rate Ω of the body.

We consider disks of various thicknesses (sketched in figure 1), so that the problem
is governed by three dimensionless parameters

χ =
d

h
, Re =

V d

ν
and

ρs

ρf

, (1.1)

where χ denotes the body aspect ratio, d its diameter and h its thickness. In the
Reynolds number Re, V stands for the body vertical velocity and ν for the liquid
kinematic viscosity. The last parameter, the ratio of the body-to-fluid densities ρs/ρf ,
is set to a fixed value very close to 1. In contrast, χ and Re are varied in the range
2 < χ < 10 and 100 < Re < 330, respectively. Both parameters are expected to have
a significant influence on the loads acting on the body. On the one hand, the Reynolds
number modifies the strength of the vortical effects on the body but does not affect
the proper and added-fluid coefficients in the inertia terms. On the other hand, inertia
terms strongly depend on the geometrical anisotropy of the body and thus vary with
χ . The body aspect ratio may also be expected to influence the relative magnitude
of the vortical loads on the body along its axial and transverse directions. Moreover,
we recently showed (Fernandes et al. 2005) that, independently of the specific body
shape (cylindrical or spheroidal), the aspect ratio strongly modifies the way a body
evolves along its periodic zigzag path: the oscillations of the orientation and those of
the velocity are nearly in phase for thick bodies (χ � 3), resulting in a style of motion
in which the body axis is almost aligned with the tangent to the path, whereas they
are more than π/2 out of phase for thin bodies (χ � 8), so that such bodies mainly
slide along the path with their midplane aligned with its tangent. It is therefore of
central importance to understand how the variations of the contributions to the force
and torque balances are capable of supporting such contrasting motions.

The present paper makes use of the kinematic characteristics of the body motion
obtained and discussed in Fernandes et al. (2007) to which the reader is referred
for details concerning the experiments and data processing. Section 2 presents the
generalized Kirchhoff equations and how they simplify according to the experimental
observations. The various contributions to the force and torque balances are described
in § 3 as a function of the governing parameters and the dominant terms in each
projection of these balances are determined and discussed. This section also provides
comparisons with similar results available for a spheroidal bubble and the two-
dimensional flat plate. The modelling of the oscillatory vortical efforts is addressed in
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§ 4 where the general scaling of F y
ω and Γ z

ω is established and yields the basis of an
empirical model.

2. Equations of motion
The motion of a non-deformable body through an unbounded viscous fluid at rest

at infinity is governed by the generalized Kirchhoff equations (Howe 1995; Mougin
& Magnaudet 2002a), which express the linear and angular momentum balances for
the complete fluid/body system. These equations are commonly written in a system
of axes with origin fixed with respect to the observer and axes rotating with the body
(say, x directed along the body symmetry axis and (y, z) along two perpendicular
radial directions, as shown in figure 1). For uniform fluid and body densities,
they are

(m� + �)·dU
dt

+ Ω × ((m � + �)·U) = Fω + Fg, (2.1)

(� + �)·dΩ

dt
+ Ω × ((� + �)·Ω) + U × (�·U) = Γ ω, (2.2)

where U is the velocity of the centre of mass of the body and Ω its rotation rate.
The left-hand side of (2.1)–(2.2) contains the inertia terms associated with the body
(of mass m and inertia tensor �, � being the unit tensor), and those due to the fluid
set in motion instantaneously by a translational or a rotational acceleration of the
body (characterized by the second-order diagonal tensors � and �, respectively).
The latter terms will be referred to as added-mass or added-inertia loads in what
follows. On the right-hand side of (2.1)–(2.2), Fg stands for the buoyancy force and
Fω and Γ ω are the entire force and torque resulting from the existence of vorticity in
the flow, due to vorticity generation at the body surface (in particular, they contain
possible history effects). The latter contributions will be referred to as the vortical
force and torque, respectively. It is now established that added-mass effects are not
affected by vorticity and have coefficients independent of the flow characteristics (in
particular the Reynolds number) and of the boundary condition at the body surface
and hence of the wake structure (see Magnaudet & Eames 2000 and Mougin &
Magnaudet 2002a and references therein). Therefore, knowing the body geometry, �
and � can be computed as if the flow were irrotational. This is how the separation
between added-mass and vortical hydrodynamic loads is achieved unambiguously in
(2.1)–(2.2).

Let (u, v, w) and (p, q, r) be the components of U and Ω in the rotating axes
(x, y, z) shown in figure 1. A major simplification to the system (2.1)–(2.2) arises
from the fact that no significant rotation p of the body about its symmetry axis was
observed experimentally (Fernandes et al. 2007). This eliminates the torque equation
along the x-direction and allows us to decouple the inertia terms in (2.1)–(2.2) for
the translational and angular velocities in the diametrical plane (y, z). Moreover, in
most cases, the body path is nearly a vertical zigzag lying in the (x, y)-plane, since
we determined w < 0.35 v and q < 0.35 r . Thus, the cross-product involving w and
q in (2.1) provides a negligible contribution to the force balance along the axial
direction and the equations for w and q are the same as those for v and r , but with
lower amplitudes. Therefore (2.1)–(2.2) can be reduced to a system of three equations
governing the velocity components u and v and the rotation rate r = d θ/d t, θ being
the inclination angle between the body symmetry axis x and the vertical direction.
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We are then left with(
ρs

χρf

+ A

)
du

dt
−

(
ρs

χρf

+ B

)
vr = F x

ω + cos θ, (2.3)(
ρs

χρf

+ B

)
dv

dt
+

(
ρs

χρf

+ A

)
ur = F y

ω − sin θ, (2.4)(
ρs

χρf

J2 + Q

)
dr

dt
− (A − B) uv = Γ z

ω, (2.5)

F x
ω and F y

ω being the components of the vortical force Fω along the x- and y-
directions, respectively, while Γ z

ω is the component of the vortical torque Γ ω along the
z-direction. The above equations are written in dimensionless form using the scales
lo = d , uo = ((�ρ/ρf )gh)1/2, fo = �ρϑg = ρf u2

oπd2, for the length, velocity and force,
respectively, �ρ = ρf − ρs being the density difference, ϑ the volume of the body and
g denoting gravity. J2 is the dimensionless moment of inertia of the body about the
z-axis, i.e. J2 = 1/16 + χ−2/12.

Equations (2.3)–(2.5) also involve the added-mass coefficients A and B which
correspond to a body acceleration in the axial and transverse directions, respectively,
and the added-moment-of-inertia coefficient Q corresponding to a rotation about the
z-axis. No exact expression for these coefficients is available for a cylinder of finite
thickness. In what follows we use the following approximate expressions:

A =
4

3π
(1 + 0.5 χ−1/2), B =

7

3π
χ−7/4, Q =

2

45π
(1 + 0.8 χ−1/2). (2.6)

The expressions for A and B were obtained by fitting the numerical results of
Loewenberg (1993a, b, 1994) over the range of χ covered by our experiments. No
result for Q seems to be available. Therefore we assumed the above expression, which
displays a decrease with χ similar to that of A and matches the asymptotic value
Q = 2/(45π) known for a flat disk (χ → ∞). The uncertainty in Q is therefore larger
for thicker bodies. However the body moment of inertia J2 is considerably larger
in this case, so that we expect the uncertainty in Q to have little effect on (2.5).
Moreover, as will be shown below, it turns out that knowing the exact expression for
Q is of little importance since the torque induced by the angular acceleration provides
a negligible contribution to (2.5).

Note that as ρs/ρf � 1 and A is much larger than B for χ > 1.5, (ρs/χρf + A)
is larger than (ρs/χρf + B) which is close to 1/χ , and that the prefactor (A − B) in
the restoring added-mass torque is much larger than the factor ((ρs/χρf )J2 + Q) in
front of the angular acceleration. Once these coefficients are known, knowledge of
the body orientation and velocity allows us to determine the various contributions of
inertia and buoyancy acting on the body at any time and to evaluate the unknown
vortical force and torque using the balance expressed by (2.3)–(2.5).

3. Analysis of the force and torque balances
For each aspect ratio, provided the Reynolds number is lower than a critical value

Rec(χ), the body follows a rectilinear path with its symmetry axis aligned with the
vertical direction. We then have u = u, v = 0, θ = 0 and the force balance (2.3)
reduces to F x

ω = −1, a steady drag force balancing the buoyancy driving force. For
Re > Rec(χ), the body follows a periodic zigzag path. For Re � 330 and 2 � χ � 10,
the experimental results revealed that the body orientation and velocity can be
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described accurately by

u(t) = u, v(t) = ṽ sin(St − φY ), θ(t) = θ̃ sin(St), (3.1)

where S = 2πf d/uo is the Strouhal number based on the frequency f of the path
oscillations and φY is the phase lag of v with respect to θ . Both quantities were found
to be weakly dependent on the Reynolds number, but strongly dependent on the
aspect ratio, since S (resp. φY ) varies from about 0.6 to 1.9 (resp. from 170◦ to 230◦)
when χ varies from 2 to 10.

As u is constant and v and θ oscillate with the same dimensionless frequency S, the
inertia terms of (2.3)–(2.5) are also pure harmonic functions. Moreover, the maximum

inclination angle θ̃ being smaller than 35◦, the components of the buoyancy force in
the rotating frame can be approximated as

cos θ � 1 − 1
2
θ2 and sin θ � sin θ̃ sin(St) � sin θ̃

θ̃
θ. (3.2)

Hence it turns out that in the axial direction, equation (2.3) corresponds mainly to a
balance between the steady part of the vortical force, say F x

ω , and the steady part of
the buoyancy force, resulting in a constant axial velocity u. The oscillatory behaviour
of v and θ only induces a slight modification in this balance (F x

ω increases from −1 to
−0.96 for Re = 300, quite independently of the aspect ratio) and the oscillatory part
of F x

ω (at frequency 2S) is less than 10% (resp. 20%) in amplitude of F x
ω for χ � 6

(resp. χ > 6). Therefore, the oscillations of the transverse velocity v and orientation
θ are only governed by equations (2.4)–(2.5), which, given (3.1)–(3.2), reduce to the
following linear set of coupled equations:(

ρs

χρf

+ B

)
dv

dt︸ ︷︷ ︸+

(
ρs

χρf

+ A

)
ur︸ ︷︷ ︸ +

sin θ̃

θ̃
θ︸ ︷︷ ︸ = F y

ω . (3.3)

Fv̇ Fur Fg(
ρs

χρf

J2 + Q

)
dr

dt︸ ︷︷ ︸ − (A − B) uv︸ ︷︷ ︸
Γuv

= Γ z
ω . (3.4)

Γṙ

The time evolutions of the various forces components acting along the transverse
direction of a thick body (χ = 2) and a thin body (χ = 10) are displayed in
figure 2 (a, b). It appears that the relative amplitudes and phase lags of the forces
follow qualitatively similar evolutions for both aspect ratios; the two force balances
are thus qualitatively similar. In contrast, the amplitudes and phase lags of the
transverse velocity v display very different evolutions for the two aspect ratios. To
better understand this difference, we consider the torque balance. The corresponding
time evolutions of the torques Γṙ , Γuv and Γ z

ω are also shown in figure 2(c, d). It is
obvious from these figures that the strength of the various torques strongly increases
with the aspect ratio. For instance the vortical torque is found to be about three times
larger for χ = 10 than for χ = 2, as is also the case for v, and both quantities appear
also to be of opposite phase.

Let us now discuss the effect of the parameters Re and χ on the various
contributions to the balances (3.3)–(3.4). The amplitudes of the four terms involved
in the transverse force balance increase strongly with Re while their increase with



Dynamics of axisymmetric bodies rising along a zigzag path 215

20 25 30 35
–0.75

–0.50

–0.25

0

0.25

0.50

0.75
(a) (b)

(c) (d)

–0.75

–0.50

–0.25

0

0.25

0.50

0.75

58 60 62 64 66

20 25 30 35
–0.75

–0.50

–0.25

0.25

0.50

0.75

–0.75

–0.50

–0.25

0

0.25

0.50

0.75

58 60 62 64 66

t/to t/to

χ = 2 χ = 10

χ = 2 χ = 10

Figure 2. (a, b) Time evolution of Fv̇ (−), Fur ( ), Fg ( ), F y
ω ( ) and v (− · −) (θ is

superimposed on Fg). (c, d) Time evolution of Γṙ ( ), Γuv ( ), Γ z
ω ( ), v (− · −) and θ (−−).

(a, c) Thick body with χ = 2; (b, d) thin body with χ = 10 (Re = 250).

χ is weaker. The contribution Fv̇ corresponding to the time rate-of-change of the
transverse velocity is significantly smaller than the other three terms (less than 0.3
for Re < 330) and is almost independent of the aspect ratio since the decrease of the
prefactor (ρs/χρf + B) with χ is compensated by the increase of both the frequency
S and the amplitude of the transverse motion ṽ. The increase of Fur with χ directly

follows that of the rotation rate r̃ = θ̃ S and is only partly attenuated by the decrease
of the prefactor (ρs/χρf + A). Hence at a given Re, the variation of the two inertia
terms with respect to χ follows a tendency opposite to that of the inertia and added-
inertia coefficients. The variation of the amplitude of the buoyancy term Fg with Re

and χ follows that of θ̃ . Consequently, the amplitude of the vortical force F y
ω increases

with χ and even more with Re, as shown in figure 3(a). Note that the increase of
the Strouhal number with the aspect ratio reported in Fernandes et al. (2007) can
now be seen as a consequence of this transverse force balance: taken together, the
increase of the transverse component of the vortical force and the decrease of the
inertia coefficients with χ require a faster transverse motion.

The amplitudes of the torques Γṙ and Γuv increase with both the Reynolds number
and the aspect ratio. The evolution with Re follows that of the amplitudes of the
oscillations of v and θ . The evolution with χ is more subtle since, at a given Re, the
effect of the aspect ratio cannot be anticipated on the grounds of the variations of the
inertia and added-inertia coefficients. Indeed for χ � 2, (A − B) depends only slightly
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Figure 3. Amplitude of the transverse force F y
ω (a) and of the torque Γ z
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150 200 250 300
–90

–75

–60

–45

–30

(a) (b)
–15

0

Re

φ
(F

ωy )

χ = 2
χ = 3
χ = 4
χ = 6
χ = 8
χ = 10

150 200 250 300
–30

–15

0

15

30

45

60

Re

φ
(Γ

ωz )

Figure 4. Phases relative to θ of F y
ω (a) and Γ z

ω (b) as a function of the Reynolds number
for various aspect ratios.

on χ while the prefactor ((ρs/χρf ) J2 +Q) is a decreasing function of the aspect ratio.
The increase of Γṙ with χ is mainly due to that of the oscillation frequency through a
factor S2. Similarly, the increase of the restoring added-mass torque Γuv follows that
of ṽ. It turns out that for all aspect ratios, the amplitude of Γuv is larger than that of
Γṙ by a factor of O(10). As a consequence of the balance (3.4), the variation of the
amplitude of the vortical torque Γ z

ω with χ and Re, which is shown in figure 3(b), is
very close to that of Γuv . Moreover, as Γuv is of opposite phase to v, the phase φ(Γ z

ω )
of the vortical torque relative to θ is also opposite to that of v, i.e. φ(Γ z

ω ) � φY − π.
Figure 4 reveals that φ(Γ z

ω ) strongly depends on the aspect ratio, contrasting with its
weak sensitivity to the Reynolds number. In contrast, as the phases of Fur and Fg are
locked to θ , the phase lag of the transverse vortical force φ(F y

ω ) relative to θ depends
only slightly on χ and is nearly independent of Re: figure 4 shows that φ(F y

ω ) varies
from −35◦ to −55◦ when χ varies from 2 to 10.

To summarize, the vortical force F y
ω is mainly balanced by two forces that depend

on the body inclination: Fur , the inertia force generated by the body rotation
(proportional to the mass of the body plus an added mass of fluid), and the
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transverse component of the buoyancy force, Fg . On the other hand, the vortical
torque is mainly balanced by the restoring added-mass torque Γuv associated with
the transverse velocity component and the body geometrical anisotropy, the torque
associated with the angular acceleration making a negligible contribution. These
balances indicate that, although the vortical force and torque presumably depend on
both the translational and rotational degrees of freedom of the body, the body rotation
(resp. transverse velocity) is essentially regulated by the transverse component of the
vortical force (resp. by the vortical torque). In particular, a stronger vortical torque,
such as that observed for thin bodies, corresponds to a larger transverse velocity,
i.e. a larger angle between the body symmetry axis and the body velocity. The same
conclusions were obtained numerically from the force and torque balances governing
the zigzag/helical path of an oblate spheroidal bubble (Mougin & Magnaudet 2006).
However, the transverse velocity required to balance the vortical torque is much
smaller in the case of a bubble since the rise velocity is much larger, owing to
the large density difference. In contrast, the axial and transverse force balances
reported by Andersen et al. (2005) in the case of a fluttering thin two-dimensional
plate at Re = O(103) and ρs/ρf ≈ 2.5 reveal very different equilibria. Under these
conditions, nonlinear effects are important and the plate exhibits a periodic motion
with noticeable higher-frequency harmonics and with a transverse velocity about three
times larger than the mean fall velocity. The transverse linear acceleration of the body
then provides a dominant contribution to the transverse force balance, whereas the
added-mass terms appear negligible. In addition, the fluctuating and mean drag
contributions to the axial force balance are of the same order of magnitude and the
associated added-mass contribution is significant.

4. Modelling of the vortical loads
The fact that the amplitudes of the vortical loads at a given Reynolds number

are larger for thinner bodies is in line with what happens for fixed bodies. Indeed,
numerical simulations of the flow about fixed thick disks (Fernandes et al. 2007)
revealed that the first two consecutive bifurcations of the wake (associated with a loss
of axial symmetry and a loss of stationarity, respectively) arise at critical Reynolds
numbers that decrease with the aspect ratio. In the stable regime, i.e. below the
first critical Reynolds number, the strength of wake effects (especially that of the
attached eddy) can be characterized by the maximum of the reverse velocity in the
recirculating region, Vt , which increases with the aspect ratio, and by a Reynolds
number Re∗ = Vtd/ν based on it. This modified Reynolds number was found to be
related to Re through the simple empirical relation Re∗ = 0.62χRe/(1 + χ ). It then
turned out that the two aforementioned wake bifurcations arise at two constant values
of Re∗, irrespective of the aspect ratio, namely Re∗

c1 ≈ 72 and Re∗
c2 ≈ 78. The analysis

of the kinematics of freely moving bodies performed by Fernandes et al. (2007) also
showed that, if the parameter Re∗ is introduced, the constant axial velocity scales with
the gravitational velocity based on the body thickness, uo = ((�ρ/ρf )gh)1/2, while the
relevant length and velocity for the path oscillations are the body diameter d and
the gravitational velocity based on it, u1 = ((�ρ/ρf )gd)1/2. As a consequence, the
Strouhal number S is proportional to u1/uo = χ1/2. The measurements of the axial

velocity, u, and of the amplitudes of the fluctuations, ṽ/S and θ̃ , then fall around
master curves independent of χ given by

u ≈ 1.35 − 3.5 × 10−3(Re∗ − Re∗
c1), (4.1)
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Figure 5. Phase difference between the transverse vortical force and the vortical torque as a
function of the parameters χ and Re: (a) �Ψ (in degrees); (b) dimensionless time delay td .

v/S ≈ 4.5 × 10−2 (Re∗ − Re∗
c1)

1/2 sin(S t − φY ), (4.2)

θ ≈ 5.8 × 10−2(Re∗ − Re∗
c1)

1/2 sin(S t). (4.3)

While these relations provide a central simplification to the problem, the phase
difference φY between the transverse velocity and the inclination remains a complicated
function of both Re∗ and χ (see figure 21 of Fernandes et al. 2007). Hence, the analysis
of the kinematics did not lead us to a simple scaling of all the parameters of the
body motion. As shown by Fernandes et al. (2005), φY is important for the way the
body motion evolves along its path: thick bodies move with their symmetry axis
essentially aligned with the path, while thin bodies slide along the path with their
symmetry axis perpendicular to it. In the previous section, we saw that φY arises
from the phase difference �Ψ = φ(Γ z

ω ) − φ(F y
ω ) between the vortical torque and the

transverse vortical force. For all aspect ratios, the force F y
ω is ahead of the torque Γ z

ω

and �Ψ changes by about 60◦ when the aspect ratio χ increases from 2 to 10 while
it only weakly depends on Re, as shown in figure 5. �Ψ can also be expressed as a
dimensionless time delay td scaled with the characteristic mean rise time to, through
td = �Ψ/S. As revealed by figure 5, td depends only weakly on the aspect ratio as
well as on the Reynolds number. The time delay between the vortical torque and the
transverse vortical force is thus of the order of to, whatever Re and χ .

Thus, two independent time scales appear to govern the problem. On the one hand,
the oscillatory motion and vortex shedding occur with a period T = f −1 proportional
to d/u1. On the other hand, the evolution of the vortex structure in the body wake,
which governs the evolution of the vortical loads, depends on the time scale to = d/uo

set by the mean rise motion. This view is supported by measurements of the fluid
velocity in the wake performed with particle image velocimetry (Ern et al. 2007). It
thus is also of interest to examine how the amplitudes of F y

ω and Γ z
ω scale with the two

different gravitational velocities, uo and u1, and vary with Re∗. Two force scales can
be naturally introduced: fo = ρf u2

oπd2 and f1 = ρf u2
1πd2 = χfo. Figure 6 shows that

a satisfactory collapse of the results, eliminating the dependence with respect to χ , is
readily obtained for F y

ω , indicating that fo is the relevant scale for the vortical force.
The transverse force F y

ω therefore scales as the drag force F x
ω and its phase relative

to the body inclination angle θ is close to −π/4 for all aspect ratios, as shown by
figure 4.
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Figure 6. Evolution with Re∗ of the amplitude of the transverse component of the vortical
force F y

ω . The line corresponds to the amplitude of the right-hand side of (4.7). The particular
values 72 and 78 correspond to Re∗

c1 and Re∗
c2, respectively.

The behaviour of the vortical torque is more complex, since neither the reference
scale Γo = fod alone nor the scale Γ1 = χΓo alone is capable of collapsing the
measured amplitudes on a single master curve. This suggests that the vortical torque
involves two contributions scaling respectively with Γo and Γ1. The first of them is
the torque Γf that results from the existence of the transverse force F y

ω , namely

Γf = αF y
ω (t + φo/S) = αF̃ y

ω sin(St + φo), (4.4)

F̃ y
ω denoting the amplitude of F y

ω . It scales with Γo and we assume both its phase
φo relative to F y

ω and its lever arm α to be constant. We select α = 0.17 (i.e. the
dimensional lever arm is 0.17d) and φo = π/18, which are representative of values
determined numerically for fixed bodies of aspect ratios 6 � χ � 10 in a uniform
flow in the range of Reynolds numbers 200 � Re � 250. The values of α and φo

can be varied by 10% with negligible effect. The second contribution Γm accounts for
the modification of the vortical torque due to the body oscillations and scales as Γ1,
namely

Γm = βχ sin(St − φ1). (4.5)

The parameters β(χ, Re∗) and φ1(χ, Re∗) have been determined by equating the
theoretical expression for the total vortical torque Γm + Γf given by (4.4) and (4.5)

with the measured vortical torque Γ̃ z
ω sin(St − �Ψ ). The corresponding results are

plotted on figure 7. The amplitude is accurately fitted by choosing β = β ′(Re∗−Re∗
c1)

1/2

with β ′ = 5.5 × 10−3, while the phase φ1 is found to be almost constant and close to
π/2. It is remarkable that β is independent of χ and evolves with Re∗ similarly to the
transverse force, while φ1 is independent of both Re∗ and χ . This result provides a
strong argument in favour of the relevance of the splitting assumption we made above
for the vortical torque. With this result at hand, the characteristics of the vortical
loads acting on all the bodies we considered can thus be described by the following
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Figure 7. Evolution with Re∗ of the amplitude parameter β and of the phase φ1 defined in
(4.5). The solid lines correspond to β ′(Re∗ − Re∗

c1)
1/2 with β ′ = 5.5 × 10−3 and to φ1 = π/2,

respectively.

analytical expressions:

F x
ω ≈ −1, (4.6)

F y
ω ≈ − 1

15
(Re∗ − Re∗

c1)
1/2 sin(St), (4.7)

Γ z
ω ≈ − 1

200
(Re∗ − Re∗

c1)
1/2 (34 sin(St + π/18) + 11χ sin(St − π/2)) , (4.8)

where the origin of all phases is now defined relative to F y
ω and the Strouhal number is

S ≈ (π/5) χ1/2. Figure 8 (resp. (6)) confirms that the amplitude of the vortical torque
(resp. force) calculated from (4.8) (resp. (4.7)) compares well with the measured
amplitude.

From the analysis of the onset of the wake instability for fixed bodies, we introduced
the modified Reynolds number Re∗ that accounts for the variation of vorticity
production with the aspect ratio. Then, assuming that the body dynamics only
involve the two gravitational velocity scales uo and u1 allowed us to express the
dependence of the frequency, amplitudes and phases of F y

ω and Γ z
ω on χ and to show

that the corresponding amplitudes are both proportional to (Re∗ − Re∗
c1)

1/2. The set
of equations (4.6)–(4.8), which makes the dependence of the vortical loads on χ and
Re∗ explicit, is a first model of the vortical loads acting on a thick disk during its
oscillatory motion. It is now interesting to consider whether the use of the vortical
loads given by (4.6)–(4.8) could generate a motion that converges towards the fully
developed zigzag when the body is released from rest. Solving the system (2.3)–(2.5)
in terms of u, v and θ with the values of the vortical loads introduced as forcing
terms can only provide the correct final solution if the initial conditions are the values
of the desired solution (3.1) at t = 0. Otherwise, a solution corresponding to the
homogeneous system, with no physical significance, also arises as part of the result
(the proof is straightforward if the system is considered linear). We have observed
that, when computed for a body released from rest, the high-frequency solution
corresponding to the homogeneous system provides the main part of the complete
solution. We know from experiments that for given χ and Re, the final trajectory of
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Figure 8. Evolution with Re∗ of the amplitude of the vortical torque Γ z
ω normalized by the

amplitude Γmodel of the right-hand side of (4.8). The solid line corresponds to (Re∗ − Re∗
c1)
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Figure 9. Comparison between the experimental characteristics of the path of a body and
those determined by solving the system (2.3)–(2.5) forced by the model (4.6)–(4.8) of the
vortical loads supplemented with a damping term (χ = 10, Re = 250). For t � 30 the curves
correspond to the numerical solution obtained with damping coefficients Cv = 0, Cr = 0.016;
initial conditions are u = v = r = 0 and θ = 1◦. For t � 30, the curves correspond to
experimental results; the origin of time was adjusted to match the numerical results at t = 30.

the body characterized by u, v and θ is unique, independent of the initial conditions
(i.e. the angle and velocity of release of the body in the tank). To converge towards
the physical solution, a possibility is then that the expressions for the vortical force
and torque include terms capable of damping the eigenmodes of the homogeneous
system.

An heuristic attempt in this direction was made by adding the damping terms
F y

ωd = −Cvuv and Γ z
ωd = −Cr |r |r to the transverse force equation (2.4) and the torque
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equation (2.5), respectively. Using the sinusoidal signals F y
ω (t) and Γ z

ω (t) provided
by (4.6)–(4.8), the system was then forced with the loads F y

ωnd = F y
ω − F y

ωd and
Γ z

ωnd = Γ z
ω −Γ z

ωd . Solving for χ = 2 and 10 yielded the desired solution for various sets
of initial conditions after the values of the coefficients Cv and Cr were properly tuned.
For χ = 10, the required damping terms were found to be very small, namely F y

ωd = 0
and Γ z

ωd was less than one percent of Γ z
ω . Figure 9 shows the kinematic characteristics

of the corresponding simulated motion for t � 30, the simulation starting from rest.
The experimental result is also displayed for t � 30. It clearly appears that, provided
such a small damping is included, the dynamical system forced by the harmonic
expression for the vortical loads converges towards a stable asymptotic solution in
good agreement with the measured motion. This result confirms that the expression
for the vortical loads given by (4.6)–(4.8) can be safely used as a forcing term to
compute the motion of freely moving bodies and to guide the elaboration of more
satisfactory theoretical models in which the explicit dependence on time is removed.

5. Conclusions
We have investigated the force and torque balances governing the planar zigzag

motion of rigid, freely moving thick disks in the aspect ratio range 2 < χ < 10,
100 < Re < 330, for a density ratio ρs/ρf � 1. We found that the body oscillatory
behaviour is essentially governed by the force balance along the body transverse
direction and by the torque balance: the vortical force is mainly balanced by the inertia
force generated by the body rotation and by the transverse buoyancy component,
while the vortical torque is mainly balanced by the restoring added-mass torque.
Both linear and angular accelerations provide only secondary contributions to these
balances. The present investigation also revealed that the evolution of the inertia forces
with the aspect ratio cannot be anticipated on the sole grounds of the evolution of
the proper- and added-inertia coefficients. The aspect ratio strongly influences the
characteristics of the unsteady wake and, as a consequence, the body motion. In
particular, the phase difference between the vortical force and torque, which increases
continuously with the aspect ratio, appears to be responsible for the phase difference
between the body velocity and orientation.

The key motivation for the present work was to provide results that can
guide the elaboration of dynamical models capable of predicting quantitatively the
oscillatory paths of non-spherical bodies. A first step towards this objective was
achieved by identifying the characteristic scales for the amplitude and phase of the
vortical contributions. More precisely, the transverse vortical force was found to be
proportional to the buoyancy force f0 acting on the body, whereas the vortical torque
was found to be the sum of two contributions, one scaling as fod and another one
scaling as χfod . The corresponding normalized amplitudes and phases of the vortical
loads are independent of the aspect ratio but their amplitudes depend on the Reynolds
number through a square-root law of the form (Re/Rec1 − 1)1/2, where Rec1 is the
threshold of the first instability of the wake behind the corresponding body held fixed
in a uniform stream. Since the present data only cover the developed state of the
motion, the explicit, harmonic, time dependence of the vortical loads could not be
removed. The next step of our research will be to consider the initial transient in order
to remove this explicit dependence by examining how the wake-induced force and
torque can be related unambiguously to the history of the velocity and acceleration
of the body.
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